If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-4.9H^2+26.95H+4
We move all terms to the left:
(H)-(-4.9H^2+26.95H+4)=0
We get rid of parentheses
4.9H^2-26.95H+H-4=0
We add all the numbers together, and all the variables
4.9H^2-25.95H-4=0
a = 4.9; b = -25.95; c = -4;
Δ = b2-4ac
Δ = -25.952-4·4.9·(-4)
Δ = 751.8025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25.95)-\sqrt{751.8025}}{2*4.9}=\frac{25.95-\sqrt{751.8025}}{9.8} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25.95)+\sqrt{751.8025}}{2*4.9}=\frac{25.95+\sqrt{751.8025}}{9.8} $
| (7x)+(2x+36)=180 | | -2-x=-2x-3 | | 6x^2+2x=21 | | 7.3t+22=2.1t=-22.2 | | 54/q=6 | | -21.6=x/6-2.4 | | x-5=3x/2+4 | | 4(−4−8m)+28m+4m=−272 | | 4=y/2-2 | | X-7=-6x-70 | | (25x)^2=40^2 | | 13x-35=4x+10 | | -4y+14=30 | | 5y+7=41 | | 3x-8+7x=32 | | 2(u+8)=70 | | 4=y/2- | | -4/m=2 | | 3(r+11)-4=14 | | -7x-5=-122+6x | | 6(8n-5)(n-4)=0 | | (4x)^2=7 | | 14n+1.2=1.6 | | 5x25=10 | | 6+n=21 | | 48+x=391 | | 6^3x=2(10^x) | | 8(x+37)=336 | | 9x^2+16x^2=40^2 | | 2=-2(r-6) | | W+w+15+45=180 | | .37x+400=881 |